Novel method for identifying residual prestress force in simply supported concrete girder-bridges

Author:

Bonopera Marco1ORCID,Chang Kuo-Chun2

Affiliation:

1. National Center for Research on Earthquake Engineering, Taipei, Taiwan

2. Department of Civil Engineering, National Taiwan University, Taipei, Taiwan

Abstract

Testing methods are required for estimating prestress losses in Prestressed Concrete (PC) girder-bridges. They mainly include destructive approaches which cause significant damages. Conversely, dynamic nondestructive methods are unsuitable. Given these findings, a novel method for identifying residual prestress force in simply supported PC girder-bridges was implemented. Following the vertical load application in a three-point bending, the method estimates the prestress force by measuring the vertical deflection at a quarter or, alternatively, at the midspan of the PC girder-bridge. The method also requires information regarding its flexural rigidity. Particularly, the initial tangent Young’s modulus must be evaluated by compression tests on cores drilled at its quarter and midspan cross-sections after three-point bending. In absence of the geometric and/or material properties, the flexural rigidity can be estimated according to free vibrations. Secondly, the method comprises a reference solution, or a finite element model of the PC girder-bridge, in which the prestress force is unknown. Thirdly, the measured deflection becomes a parameter of the prestress force identification process. Accurate identifications are obtained when the deflection, under a higher vertical load, was precisely measured and the flexural rigidity was determined using reference solution and initial tangent Young’s modulus. In this article, the novel method was simulated on a simply supported PC beam-bridge subjected to time-dependent prestress losses for ≈9.5 months in the laboratory.

Funder

National Applied Research Laboratories Project of Taiwan

Ministry Of Science and Technology (MOST) of Taiwan

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3