Effect of polypropylene fibers on the bond-slip performance of HSS bars in HPC and UHPC

Author:

Pour Arash K.1,Noroozinejad Farsangi Ehsan2ORCID

Affiliation:

1. Innovative Structural Engineering and Mechanics Group, Houston, TX, USA

2. Urban Transformations Research Centre (UTRC), Western Sydney University, NSW, Australia

Abstract

To control the structural performance of reinforced concrete (RC) members, enough bonding between rebars and concrete should be provided. Different parameters affect the bond interaction between rebars and concrete. This investigation tends to assess the bonding resistance behaviour of high-strength steel (HSS) bars in concrete considering the effect of two types of concrete: high-performance concrete (HPC) and ultra-high-performance concrete (UHPC). In addition to the type of concrete, the effect of fibers incorporation is measured. For this aim, a total of thirty-six specimens were cast and evaluated. Two diameters (12 mm and 16 mm) and three embedded lengths (1, 2, and 3 times the diameter of rebars) were also used, and the impact of the rebar’s diameter and embedded length on the load-bearing capacity, stress and slip of rebars were examined. To boost the bonding characteristics of reinforcements, three various polypropylene fibres (PF) contents were added: 0%, 0.5% and 1%. A pull-out test was carried out on samples. In addition, the obtained results and previous models proposed by literature have been employed to generate new models to predict the bond-slip characteristics of HSS bars in HPC and UHPC when different PF contents are incorporated. The results showed that the maximum peak of slip between the HSS bars and concrete deteriorated with the utilisation of PF, and this peak declined more for UHPC. Additionally, the load capability of specimens was significantly enhanced when PF were added. Finally, the model suggested in this paper may be used to forecast the ultimate stress and bond-slip characteristics of HSS bars in conventional and PF-reinforced HPC and UHPC, with a good level of correctness with the experimental results.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3