Force-monitoring ring based on white-light interferometry for bridge cable force monitoring and its temperature compensation

Author:

Li Shengyuan1,Lv Haifeng1,Kuang Yachuan2,Deng Nianchun3,Sun Changsen4,Zhao Xuefeng1

Affiliation:

1. School of Civil Engineering, Dalian University of Technology, Dalian, China

2. School of Civil Engineering, Central South University, Changsha, China

3. Department of Civil Engineering, Guangxi University, Nanning, China

4. College of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian, China

Abstract

This article proposes a novel white-light interference (WLI) force-monitoring ring for bridge cable force monitoring and temperature compensation. The WLI force-monitoring ring employs a sensing optical fiber wrapped around the outer surface of an elastomer to measure the expansion caused by applied load and temperature. By installing WLI force-monitoring ring between the anchor plate and the spherical plate of the cable, cable force can be captured by the sensing optical fiber and thus measured after temperature compensation. Based on white-light interferometry, two force-monitoring rings with resolution of 0.25 µ are designed. To find a route to temperature compensation, laboratory experiments are carried to study the effects of temperature on WLI force-monitoring ring both in free and forced states. Theoretical analysis and calibration experiments are implemented to verify the effectiveness of the proposed WLI force-testing ring, and the experiment results expose that the temperature-induced strain can be compensated using a WLI force-monitoring ring in free state. As a comparison, similar work is made for four fiber Bragg grating sensors attached to the elastomer evenly near the sensing optical fiber. The comparison results verify that the WLI method achieves better linear relation and repeatability than fiber Bragg grating. The WLI force-monitoring ring provides a high-precision and low-cost method for bridge cable force monitoring.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities of China

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3