High-resolution frequency domain decomposition for modal analysis of bridges using train-induced free-vibrations

Author:

Chen Tao1,Wang Qiang2,Yao Xiao-Jun2ORCID

Affiliation:

1. School of Civil Engineering, Fuzhou University, Fuzhou, China

2. School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin, China

Abstract

Modal parameters are structural inherent characteristics that can be applied for revealing performance of railway bridges. Free vibration signals generated by a passage of train are commonly utilized to estimate the modal parameters of railway bridges due to their higher signal-to-noise ratios compared to random vibrations caused by ambient loads. However, since free vibration signals rapidly decay over time, the available free-vibration data is typically short-time. When using the fast Fourier transform-based spectral estimation method for modal identification from short-time vibration data, a phenomenon known as spectral leakage occurs, leading to miss-identification of some structural modes. In this study, the classical frequency domain decomposition (FDD) is improved for modal identification of railway bridges, in which the higher resolution auto-power spectral density (PSD) and cross-PSD functions are calculated through the autoregressive (AR) model-based method. The AR model-based method improves both the smoothness and resolution of the PSD functions compared to the fast Fourier transform technique. These AR model-based PSD functions are then employed in the FDD process to facilitate frequency and mode shape identification while avoiding spurious noise modes. The proposed eigenvalue fitting technique is subsequently utilized to estimate damping ratios. Numerical simulation data as well as vibration data from an actual bridge are analyzed to validate the proposed method, with a comparison made to the Welch’s PSD-based method. The results demonstrate that the modified FDD approach enables more effective identification of structural modes, even in the presence of closely-spaced modes.

Funder

Natural Science Foundation of Hebei Province

National Natural Science Foundation of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3