Accurate and fast damage thickness estimation in concrete using handheld GPR and spectral pattern matching

Author:

Mizutani Tsukasa1ORCID,Iwai Shunsuke1ORCID

Affiliation:

1. Institute of Industrial Science, The University of Tokyo, Tokyo, Japan

Abstract

Handheld Ground Penetrating Radar (GPR) is utilized for detecting rebar, but detecting damage is difficult due to its low reflectance. This study introduces an algorithm to quantitatively estimate damage thickness from GPR-received waveforms. Simple methods to separate peaks from time waveforms at the top and bottom of the crack prove challenging due to destructive interference and side lobes. In previous studies, it has been confirmed that minor variations in damage thickness affect the frequency property. We propose an algorithm to estimate damage thickness using pattern matching with a theoretical amplitude spectrum that accounts for multiple reflections. Initially, the damage thickness is roughly determined by combining low-frequency spectrum centroids with spectrum amplitude. After roughly estimating the damage thickness, subsequent spectral pattern matching is performed within predefined gating and bandwidth ranges. This approach enables quantitative estimation of damage thickness from 2 mm to 180 mm with a millimeter order accuracy, demonstrating its practical application potential.

Funder

Japan Science and Technology Corporation

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3