Cyclic performance of prefabricated composite shear stud connectors for accelerated bridge construction

Author:

Li Chengjun123,Heng Junlin45ORCID,Zhou Zhixiang4,Zhan Yulin1ORCID,Dong You6ORCID

Affiliation:

1. Department of Bridge Engineering, Southwest Jiaotong University, Chengdu, China

2. Department of Road and Bridge Engineering, Sichuan Vocational and Technical College of Communications, Chengdu, China

3. Sichuan Highway Planning, Survey, Design and Research Institute Ltd, Chengdu, China

4. Department of Civil Engineering, Shenzhen University, Shenzhen, China

5. Department of Civil Engineering, University of Birmingham, Birmingham, UK

6. Department of Civil and Environmental Engineering, The Hong Kong Polytechnical University, Hong Kong, China

Abstract

This study examines the cyclic shear-slip performance of a novel prefabricated composite shear stud (PCSS) connector designed for accelerated bridge construction (ABC) of composite structures. An in-depth experimental procedure is employed involving the design and fabrication of four push-out specimens with two different stud configurations. The specimens are then tested under both monotonic and cyclic-to-monotonic loading protocols. Upon completion of the testing phase, a meticulous inspection of the fractography is conducted to delineate and qualify the failure mode of the PCSS connectors. Simultaneously, a comprehensive shear-slip curve is derived from the measured data, enabling a detailed analysis over the mechanical performance. Furthermore, the study calculates a series of deformation-associated indicators from the shear-slip curve, effectively quantifying the ductility, recoverability, and capacity of the PCSS. The test results accentuate a well-deformed and ductile failure mode of the tested PCSS specimens, marked by the stud fracture and crushing of surrounding concrete. This could be attributed to the constraint of vertical plates of the PCSS on the concrete, which improves the capacity and recoverability of the PCSS. Whereas, the performance of the PCSS is also notably influenced by the group nail effect, for which the ductility and per-stud capacity degrade with the increase in the number of studs. Especially, the PCSS specimen exhibits full elastic-to-plastic hysteresis loops under cyclic loads, together with the satisfied ductility, implying an excellent potential of the PCSS to dissipate energy under impact loads. In addition, the PCSS displays a robust stiffness across different cyclic loading blocks. Hence, satisfactory post-damage ductility has still been observed in the PCSS under the monotonic loading after the cyclic loading. In conclusion, this work elucidates the superiority of the PCSS in terms of capacity, ductility, and recoverability, providing a promising basis for their application in the accelerated construction of composite bridges.

Funder

Sichuan Science and Technology Programme

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3