Modeling of wedge-pin joint for the dynamic analysis of a planar temporary demountable structure

Author:

Yang Qingshan1,Xu Liang1ORCID,Hui Yi1ORCID,Li Huihui2,Qin Jinwei3

Affiliation:

1. School of Civil Engineering, Chongqing University, Chongqing, China

2. The City College of New York, Grove School of Engineering, New York, USA

3. China Electronics Engineering Design, Beijing, China

Abstract

In order to understand deeply the dynamic behavior of a Temporary Demountable Structure (TDS), a 2-D analytical model of the Wedge-Pin Joint (WPJ) is established. This model takes into account of the semi-rigidness of the vertical contact and the sliding between beam and column based on the frictional shear-slip mechanism. The analytical WPJ model is validated by comparing with the dynamic responses of the TDS modeled with that obtained from the finite element model under harmonic load. Furthermore, a thorough dynamic analysis of the TDS subjected to a bipedal walking force is conducted. Results show that the hysteretic effect of the WPJs can be induced in the system. It is strongly affected by the amplitude of excitation, and a larger excitation does not mean a stronger hysteresis. This can be interpreted by that large horizontal contact force for joints resulted from strong excitation in horizontal direction yields high friction, which enhances the clamping effects in vertical and then weakens the hysteretic effect of WPJs. In addition, the vertical slip for joint is limited to a small value due to a relative small acceleration, this small vertical slip leads to a small of hysteretic loop. Finally, it is also found that the semi-rigidness of WPJs can apparently increase the deformation and acceleration of the system in both horizontal and vertical directions. This research provides for the first time an analytical model of WPJs of TDS, which will be beneficial to the future research of human-TDS interaction.

Funder

111 project of the Ministry of Education and the Bureau of Foreign Experts of China

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3