A compact self-adaptive recursive least square approach for real-time structural identification with unknown inputs

Author:

Askari Mohsen1,Li Jianchun2,Samali Bijan1

Affiliation:

1. Institute for Infrastructure Engineering, Western Sydney University, Penrith, NSW, Australia

2. Centre for Built Infrastructure Research, University of Technology Sydney (UTS), Sydney, NSW, Australia

Abstract

A new online tracking technique, based on recursive least square with adaptive multiple forgetting factors, is presented in this article which can estimate abrupt changes in structural parameters during excitation and also identify the unknown inputs to the structure, for example, earthquake signal. The method considers an adaptive rule for each of the forgetting factors assigned to each of the unknown parameters and thus enables simultaneous identification of different time-varying parameters of the system. The method is validated through both linear and nonlinear case studies, with different excitations and damage scenarios. The results show that the proposed algorithm can effectively identify the time-varying parameters such as damping, stiffness as well as unknown excitations with high computational efficiency, even when the measured data are contaminated with different levels of noise. However, when damage occurs while the excitation is small, the identification error remains at a small range, and therefore, covariance cannot be amplified to effectively track the changes in unknown parameters.

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3