Low-cycle fatigue in ultra-high-strength steel welded joints in the as-welded and post-weld-treated conditions

Author:

Riski Jani1ORCID,Ahola Antti1,Skriko Tuomas2,Björk Timo1

Affiliation:

1. Laboratory of Steel Structures, LUT University, Lappeenranta, Finland

2. Laboratory of Welding Technology, LUT University, Lappeenranta, Finland

Abstract

This study investigates four different joints under fluctuating tension cycles in the low-cycle fatigue (LCF) regime. The selected material was S960 ultra-high-strength steel, manufactured via the direct-quenching manufacturing route. Based on typical engineering solutions, the following joints were chosen to be investigated in the experimental tests: metal active gas and laser welded butt joints, fillet-welded load-carrying cruciform joints, and non-load-carrying double-sided transverse attachment joints. To evaluate the improvement gained by the post-weld treatment, both as-welded condition and high-frequency mechanical impact treated joints from all joint types were tested. In addition to the experimental tests, some of the joints were analyzed using finite element (FE) models, with the aim of comparing the accuracy of the different fatigue assessment methods and the effect of the toe radius on the computational fatigue lives. The results obtained from the experimental tests and FE analyses were compared with each other and with IIW recommendations using the nominal stress, structural hot-spot (HS) stress, effective notch stress (ENS) and 4R methods. Based on the results, the structural HS and 4R methods are very suitable for the fatigue strength assessment in the LCF regime. With the nominal stress method, the computational fatigue lives remained uniformly conservative, while with the ENS method, the results varied depending on the calculation method. Using the value r = 1 mm as the weld toe rounding is justified in the FE analysis.

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3