Experimental and theoretical studies on postfire behavior of functionally graded ultra-high performance concrete

Author:

Du Linpu12,Ji Xuping3,Lu Kaiwei12,Wang Jingquan12ORCID

Affiliation:

1. Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, School of Civil Engineering, Southeast University, Nanjing, China

2. Bridge Engineering Research Center of Southeast University, Nanjing, China

3. State Key Laboratory of High Performance Civil Engineering Materials, Jiangsu Sobute New Materials Co. Ltd, Nanjing, China

Abstract

In order to improve structural fire-resistant behaviors, this paper designed a two-layer functionally graded ultra-high performance concrete (FGUHPC) structure composed of a UHPC layer and a lightweight aggregate concrete (LWAC) layer. UHPC layers are adopted to provide structural bearing capacity and protected by LWAC layers from elevated temperature. Splitting tensile tests and three-point flexural tests were conducted under ambient and elevated temperatures to evaluate interfacial bond performance and flexural bearing capacity, where two interfacial treatments were adopted and compared. The experimental results revealed that FGUHPC members exhibited good integrity during heating, no explosive spalling occurred and the maximal temperature at interfacial regions was 266°C. The interfaces showed desirable bond performance under ambient temperature while the splitting tensile strength was decreased by around 85% in the case of high temperature. Flexural test results indicated that the structural stiffness would be reduced by around 42% under elevated temperature, as a result, the maximal deflection was increased from 2.5 mm to 3.7 mm. SWM could significantly improve interfacial bond performance and prevent debonding failure of specimens at the postfire state, leading to higher structural bearing capacities. The bearing capacities of specimens with and without interfacial treatments were 42.7 kN and 38.4 kN respectively under ambient temperature, which remained about 88% after elevated temperature.

Funder

National Natural Science Foundation of China

China Communications Construction Company

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3