A deep neural network-based vehicle re-identification method for bridge load monitoring

Author:

Zhang Yufeng12,Xie Junxin3,Peng Jiayi12,Li Hui3ORCID,Huang Yong3ORCID

Affiliation:

1. State Key Laboratory of Safety and Health for In-service Long Span Bridges, Jiangsu Transportation Research Institute, Nanjing, People’s Republic of China

2. Observation and Research Base of Transport Industry of Structural Safety and Long-term Performance of Long-span Cable Supported Bridges, Nanjing, People’s Republic of China

3. Key Laboratory of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology, School of Civil Engineering, Harbin Institute of Technology, Harbin, China

Abstract

The accurate tracking of vehicle loads is essential for the condition assessment of bridge structures. In recent years, a computer vision method that is based on multiple sources of data from monitoring cameras and weight-in-motion (WIM) systems has become a promising strategy in bridge vehicle load identification for structural health monitoring (SHM) and has attracted increasing attention. The implementation of vehicle re-identification, namely, the identification of the same vehicle from images that were captured at different locations or time instants, is the key topic of this study. In this study, a vehicle re-identification method that is based on HardNet, a deep convolutional neural network (CNN) specialized in picking up local image features, is proposed. First, we obtain the vehicle point feature positions in the image through feature detection. Then, the HardNet is employed to encode the point feature image patches into deep learning feature descriptors. Re-identification of the target vehicle is achieved by matching the encoded descriptors between two images, which are robust toward scaling, rotation, and other types of noises. A comparison study of the proposed method with three published vehicle re-identification methods is performed using vehicle image data from a real bridge, and the superior performance of our proposed method is demonstrated.

Funder

National Natural Science Foundation of China

Open Funding of State Key Laboratory of Safety and Health for In-Service Long Span Bridges

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3