Seismic performance and shear bearing-capacity of truss SRC beam-column frame joints

Author:

Deng Zhiheng1,Xu Changchun12,Zeng Jian12,Wang Huaping34ORCID,Wu Xiaoping5,Xiang Ping4567

Affiliation:

1. College of Civil and Architectural Engineering, Guangxi University, Nanning, China

2. Hualan Design & Consulting Group, Nanning, China

3. School of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, China

4. Key Lab of Structures Dynamic Behavior and Control (Harbin Institute of Technology), Ministry of Education, Harbin, China

5. School of Civil Engineering, Central South University, Changsha, Hunan, China

6. National Engineering Laboratory for High-speed Railway Construction, Changsha, China

7. Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China

Abstract

The structural performance of a frame joint is particularly important, which can determine the safe state of the global structure. For this reason, the seismic performance of the truss steel reinforced concrete (SRC) beam-column frame joints is investigated by the experimental study and the nonlinear finite element modeling. The main design parameters include the section size of the web rods, the axial compression ratio and the section size of I-steel. The failure mechanism, load-displacement skeleton curve, the ductility and energy dissipation capacity, and shear deformation in the core zone of the truss SRC beam-column joints are studied. A formula is put forward to describe the shear bearing-capacity of the joints. The results indicate that the truss SRC beam-column frame joints generally have good seismic performance. The size of steel and web members have impact on the seismic performance of the truss SRC beam-column joints, and the axial compression ratio is an important factor that impacts the hysteresis behavior and energy dissipation. The proposed shear bearing-capacity formula can objectively reflect the performance of the joints.

Funder

national natural science foundation of china

lanzhou university

central south university

harbin institute of technology

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3