Analysis of the seismic performance of a large underground station structure in complex stratum considering the influence of axial force

Author:

Bao Xiaohua12,Liu Chunxun12,Shen Jun12ORCID,Huang Yujun12,Chen Xiangsheng12,Cui Hongzhi12

Affiliation:

1. College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China

2. Key Laboratory of Coastal Urban Resilient Infrastructures, Ministry of Education, Shenzhen University, Shenzhen, China

Abstract

The large underground structure in saturated stratum is vulnerable to float during an earthquake. This results in a plethora of problems, such as uneven settlement, large internal force and structure damage. In this study, the seismic behavior of a three-story, two-span subway station in complex saturated stratum was investigated through water-soil fully coupled 3D finite element method. In the analysis, the nonlinear soil behavior was described by a cyclic mobility model and the structure was calculated using a nonlinear constitutive model which can consider the influence of axial force on its bending moment. Joints elements were used to model the contact surface between soil and structure. The development of the soil displacement and internal force of the station structure at different times during a huge earthquake was examined. The bearing capacity of the station structure members was analyzed. The results indicated that the vertical displacement was spatially distributed. The larger additional seismic stresses appeared in the bottom slab and side wall. Failed elements were observed in both the walls and slabs, and the walls were more easily damaged than the slab. The results provide useful reference for the large underground structure seismic design in the construction of urban underground space.

Funder

National Natural Science Foundation of China

The National Key R&D Program of China

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3