Affiliation:
1. School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, China
2. Central-South Architectural Design Institute Co. Ltd, Wuhan, China
Abstract
Structural vibration of transmission tower-line systems under wind excitations may induce damage and even destruction of the overall system. The control of transmission towers is conducted in the past decades by dynamic absorbers and dampers. Recently, a new type of passive control device, namely electromagnetic inertial mass dampers (EIMD), has been proposed and applied in structural vibration control However, the EIMD has not yet been systematically investigated in the vibration control of power transmission towers. In this regard, the vibration control of wind-disturbed transmission towers using EIMDs is conducted. The analytical model of a real tower-line system is established in line with the Hamilton principles. The response control approach using EIMDs is proposed and the control performance of different methods is compared in both the time and frequency domain. Detailed parametric studies are carried out to examine the effects of electromagnetic damping, inertial mass, and wind load intensity on EIMD performance. The assessment of the system energy responses without and with control is also conducted. The made observations demonstrate that the application of EIMDs can significantly reduce the structural dynamic responses under wind loading and the control performance of the EIMDs is quite robust and versatile under different wind load intensities.
Funder
Science and technology plan project of the Central-South Architectural Design Institute Co. Ltd
National Natural Science Foundation of China
Subject
Building and Construction,Civil and Structural Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献