Experimental and numerical investigation of wave-current forces on coastal bridge superstructures with box girders

Author:

Zhang Jiawei1ORCID,Zhu Bing1,Kang Azhen1,Yin Ruitao1,Li Xin1,Huang Bo1

Affiliation:

1. Southwest Jiaotong University, Chengdu, China

Abstract

Coastal bridges are exposed to hurricane waves and storm surges during hurricanes, which threaten the safety of the superstructures. Since waves and ocean currents coexist in the natural marine environment and the action of currents leads to changes in wave parameters and thus affects wave loads, considering their interaction is necessary for the study of wave forces on coastal bridges. In this study, hydrodynamic loads on a box girder with the joint action of regular waves and currents are investigated with both experiments and numerical models. A series of experiments of wave forces that include conditions with different wave heights, current velocities, wave periods and submergence depths are conducted in a wave flume. Two-dimensional numerical simulations are performed to further investigate the mechanics of wave-current forces on box girder bridges. The wave parameters and wave forces of the numerical simulations are compared with the experimental results. The results indicate that a following current usually leads to higher maximum horizontal forces and lower maximum vertical forces. The opposing current results in a higher maximum hydrodynamic vertical force than following current with a low submergence depth. However, due to the joint effect of the wave parameters and structure position relationships, the behaviours of wave forces in other situations become complicated. It is anticipated that this study can provide experimental data of wave-current forces for the superstructures of box girder bridges and enhance the understanding of the mechanism of bridge damage by waves and currents.

Funder

National Natural Science Foundation of China

applied basic research program of sichuan province

fundamental research funds for the central universities

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3