Experiment study on chloride corrosion deterioration of load-bearing concrete segment

Author:

Feng Kun12,Liu Sijin3,He Chuan1,Peng Zuzhao1,Gou Chao1,Zhang Haihua4,Sun Qi1

Affiliation:

1. Key Laboratory of Transportation Tunnel Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu, China

2. China-Japan RSC Structure Research Center, Southwest Jiaotong University, Chengdu, China

3. China Railway 14th Construction Bureau Co., Ltd, Jinan, China

4. Technical Research & Development Institute, Kumagai Gumi Co., Ltd., Tsukuba, Japan

Abstract

In order to study the combined action of compression-bending load and surrounding ion erosive environment on underwater shield tunnel, a series of cofferdam-type electrochemical-accelerated corrosion tests of mini segments are carried out to investigate the segment reinforcement corrosion under different compression-bending loads and the change of internal force and rigidity of mini segments under different load-bearing and corroding conditions. Then, the failure pattern of mini segments under different loading and corroding states are recorded and analyzed. The results indicate that the following: (1) the larger the external load, the shorter the initial rust time of the steel bar; (2) the corrosion rate of steel bar increases linearly with time, and the ratio of corrosion of steel bar increases quadratically with time, the larger the load, the more obvious the increase will be; (3) after the corrosion of steel bar, the change rate of the strain for the steel bar increases as the external load augments, and as a matter of fact, the change rate of the strain increases as well, besides, the degree of strain change for compressive steel is obviously lower compared with that of tensile steel bar; (4) the effect of electric corrosion on the deflection of the segments is more obvious with the increase of external load, and a quadratic increase relationship between the deflection and the corrosion is observed in the process of corrosion; (5) It can be concluded that plastic failure is observed for the segments without loading and for those without cracks in the initial stage of loading, which can be indicated directly by the relatively smaller loss rate of steel section, while brittle failure is presented as the failure pattern for the segments with cracks after loading for certain period, which means the loss rate of steel section is relatively larger. The results can briefly provide useful reference for rational design and durability assessment of shield tunnel segmental linings.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3