Seismic response prediction method of train-bridge coupled system based on convolutional neural network-bidirectional long short-term memory-attention modeling

Author:

Zhang Xuebing1,Xie Xiaonan1,Zhao Han2ORCID,Shao Zhanjun2,Wang Bo3,Han Qianqian3,Pan Yuxuan3,Xiang Ping2ORCID

Affiliation:

1. College of Civil Engineering, Xiangtan University, Xiangtan, Hunan Province, China

2. School of Civil Engineering, Central South University, Changsha, Hunan Province, China

3. Anhui Xinhua University, Hefei, Anhui Province, China

Abstract

Seismic response prediction is crucial for the safety analysis of train-bridge coupled systems. However, due to the complexity, suddenness, and high-risk nature of earthquakes, there are strong nonlinear relationships among different parts of bridges, making it challenging to express their spatial correlations using analytical models and traditional neural networks. To address this, this paper establishes a ballast track shaker scaling model and employs the grating monitoring measurement method to construct a spatial quasi-distributed monitoring system for the ballast track, thereby collecting seismic strain responses of the train-bridge coupled system under various seismic conditions. A hybrid neural network method is proposed for predicting the seismic responses of the train-bridge coupled system. This hybrid neural network integrates the features of a Convolutional Neural Network (CNN), Bidirectional Long Short-Term Memory Neural Network (BiLSTM), and the attention mechanism, thereby termed the CNN-BiLSTM-attention hybrid neural network. The model was validated using strain responses from 54 seismic scenarios. The results indicate that the model has a Mean Absolute Error (MAE) of 0.2349 and a coefficient of determination (R2) of 0.9446. Comparing the prediction results with those from RNN and LSTM models, it was found that the CNN effectively extracts features under various seismic parameters, while the BiLSTM better captures the temporal information of the strain responses, ensuring effective prediction regardless of the magnitude of strain responses. Therefore, the CNN-BiLSTM-attention hybrid neural network model is recommended for predicting seismic response.

Funder

The Key R&D Projects of Hunan Province

National Natural Science Foundation of China

China Railway Corporation Limited Science and technology research and development program

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3