High-velocity impact behaviour of a new hybrid fibre-reinforced cementitious composite

Author:

Zhang YX1,Kerr Zachary1,Jarvis Brian2,Volant Rhys J1

Affiliation:

1. School of Engineering and Information Technology, The University of New South Wales, Canberra, ACT, Australia

2. Weapons Systems Division, Defence Science and Technology Organisation, Edinburgh, SA, Australia

Abstract

In this article, a new engineered cementitious composite reinforced with 0.6% volume steel fibres and 1.5% volume polyvinyl-alcohol fibres is developed aiming for enhanced impact resistance compared to other construction materials. Fundamental mechanical properties of the new composite including the compressive strength, Young’s modulus, tensile strength and flexural behaviour were tested. To calibrate the impact resistance of the new composite, high-velocity impact tests of panels made of the new material were conducted when subjected to impact from a standard 7.62 mm round in-service bullet fired from a knight armament SR-25 military rifle. For comparison, plain concrete panels and concrete panels reinforced with 2% volume steel fibres were also tested. The post-impact responses of the panels in terms of crater sizes, damage failure mode, fragmentation size, weight and regress velocity are analysed and compared to characterize the impact resistance of the new engineered cementitious composite. The test results demonstrate significantly enhanced impact and shatter resistance of the new hybrid fibre-reinforced cementitious composite with reduced spalling and fragmentation, localized damage areas and improved cracking resistance.

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3