Damage detection of structures using signal processing and artificial neural networks

Author:

Beheshti Aval Seyed Bahram1ORCID,Ahmadian Vahid1,Maldar Mohammad1ORCID,Darvishan Ehsan2

Affiliation:

1. Department of Civil Engineering, K. N. Toosi University of Technology, Tehran, Iran

2. Department of Civil Engineering, Islamic Azad University, Roudehen Branch, Roudehen, Iran

Abstract

This article presents a signal-based seismic structural health monitoring technique for damage detection and evaluating damage severity of a multi-story frame subjected to an earthquake event. As a case study, this article is focused on IASC–ASCE benchmark problem to provide the possibility for side-by-side comparison. First, three signal processing techniques including empirical mode decomposition, Hilbert vibration decomposition, and local mean decomposition, categorized as instantaneous time–frequency methods, have been compared to find a method with the best resolution in extracting frequency responses. Time-varying single degree of freedom and multiple degree of freedom models are used since real vibration signals are nonstationary and nonlinear in nature. Based on the results, empirical mode decomposition has proved to outperform than the others. Second, empirical mode decomposition is used to extract the acceleration response of the sensors. Next, a two-stage artificial neural network is used to classify damage patterns. The first artificial neural network identifies location and severity of damage and the second one calculates the severity of damage for the entire structure. IASC–ASCE benchmark problem is used to validate the proposed procedure. By taking advantage of signal processing and artificial intelligence techniques, damage detection of structures was successfully carried out in three levels including damage occurrence, damage severity, and the location of damage.

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3