Risk-based asset management framework for highway retaining wall systems using wireless structural health monitoring data

Author:

Admassu Kidus A1,Lynch Jerome2ORCID,Athanasopoulos-Zekkos Adda3,Zekkos Dimitrios3,Benhamida Brahim4

Affiliation:

1. Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, USA

2. School of Engineering, Duke University, Durham, NC, USA

3. Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA

4. Mannik and Smith Group, Inc., Canton, MI, USA

Abstract

Retaining walls are important structural systems used in the construction of highways. With asset management methods for retaining wall inventories lagging those developed for highway bridges, there is a need to develop risk management methods for these critical structural systems. A major challenge is the vast inventories of retaining walls that asset managers must manage and the inherent limitations of visual inspections. This study proposes an asset management framework for retaining walls based on risk assessments using structural monitoring data. First, a long-term wireless monitoring solution is proposed to measure wall tilt and strain over long periods of time. Second, an analytical framework is developed to separate wall thermal responses from lateral earth pressures responses with the latter used to extract estimated lateral earth pressure distributions. A statistical distribution of lateral earth pressures are used in a reliability assessment of the wall to provide a measure of failure probability that can be combined with failure consequences to estimate asset risk. To illustrate the proposed methodology, a reinforced concrete cantilever retaining wall panel is selected for long-term structural health monitoring. A wireless structural health monitoring system is installed to measure the tilt, strain, and temperature response of the wall continuously over 15 months. The study reveals the wall exhibits strong diurnal and seasonal variations offering insight into wall behavior under operational conditions. Hypothesized levels of corrosion in the steel reinforcement at the base of the wall are explored to estimate the wall reliability. Even under the assumption of 20% reinforcement section loss, the monitored wall was found to have a reliability index well above 3.0.

Funder

Michigan Department of Transportation

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3