Ride comfort and impact factor of a seven-span continuous cable-stayed bridge

Author:

Kim Chul-Woo1ORCID,Kimura Shinya2ORCID,Sugiyama Hiroki3,Sato Akinori3,Ono Kazuyuki2

Affiliation:

1. Civil and Earth Resources Engineering, Graduate School of Engineering, Kyoto University Faculty of Engineering, Kyoto, Japan

2. Department of Infrastructure, Eight-Japan Engineering Consultants Inc, Osaka, Japan

3. Construction Division, Hanshin Expressway Company Limited, Osaka, Japan

Abstract

This study was conducted to investigate the vibration serviceability and impact coefficient of a seven-span continuous cable-stayed bridge planned for an expressway extension using a three-dimensional vehicle–bridge coupled vibration analysis. For the bridge design, deflection under the designed live load of the continuous cable-stayed bridge did not meet the deflection limit specified in “Japanese Design Specifications for Highway Bridges.” The excessive deflection indicates the possibility of poor vibration serviceability. To clarify the bridge vibration serviceability, the dynamic responses of the bridge and passing vehicles were examined using the three-dimensional vehicle–bridge coupled vibration analysis. The three-dimensional analysis was validated by comparing the vibration response of a single-span steel cable-stayed bridge in service subjected to vehicle running tests with those numerical responses from the three-dimensional analysis. The ride comfort of vehicles on the bridge was assessed in terms of vibration serviceability according to the ISO 2613-1 international standard for evaluating whole-body vibration exposure. The observation from the simulation-based investigation demonstrated that the vehicle response does not exceed the ride comfort limit irrespective of vehicle, road, and running conditions. In other words, the findings confirmed a negligible effect of large deflections on driving safety. The impact factors were found to be less than 1.05 for the main girder, less than 1.03 for the main tower base, and less than 1.04 for the cable. The impact factor was greatest when several vehicles were running at resonant headway.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3