Cable effective length model error-based bridge performance warning method under thermal action

Author:

Wang Yan1,Yang Dong-Hui1,Zhou Yu-Zheng2,Yi Ting-Hua1ORCID

Affiliation:

1. School of Civil Engineering, Dalian University of Technology, Dalian, China

2. Railway Engineering Consulting Group Co, Ltd, Beijing, China

Abstract

The cables of long-span cable-stayed bridges are subjected to substantial tension during long-term service and are more susceptible to corrosion and fatigue failure than concrete structures. Most existing structural health monitoring (SHM) systems do not have monitoring equipment to directly measure cable length, and long-term monitoring of the change in cables is less involved. The displacement response of a bridge is induced by the combination of dynamic effects (wind and highways) and quasi-static effects (temperature). In this paper, the dynamic responses were eliminated by averaging the displacement data for 10 min, and the relationship between temperature and displacement was studied. Based on the monitoring data, the distribution of the thermal field for the bridge was studied and the time variability of the tower displacement was investigated. The correlation was analyzed to study the relationship between the temperature and the tower displacements, the north tower–south tower distance and the tower–girder distances. A strong linear relationship between the temperature and quasi-static responses of the displacements was observed. The thermal expansion coefficient of the effective length of cables was proposed as a quantitative index for long-term cable monitoring. The error in the cable effective length is proposed as the warning index for performance warning research. The results show that the proposed performance warning method can monitor cables and perform warnings when the cable is damaged.

Funder

National Natural Science Foundation of China

Liaoning Revitalization Talents Program

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3