Development of strength and elastic modulus of concrete sealed in steel tube under sustained load at early age

Author:

Jiao Yuying1ORCID,Han Bing12,Xie Huibing1,Zhu Li1,Fernando Dilum3ORCID,He Zhenwei4

Affiliation:

1. School of Civil Engineering, Beijing Jiaotong University, Beijing, China

2. Key Laboratory of Safety and Risk Management on Transport Infrastructures, Ministry of Transport of PRC, Beijing, China

3. School of Civil Engineering, The University of Queensland, St Lucia, QLD, Australia

4. Architectural & Civil Engineering Design Institute Co., Ltd., Hangzhou, Zhejiang Province, China

Abstract

Concrete-Filled Steel Tubular Structures (CFSTSs) have become popular among the structural engineering community due to significantly higher load carrying capacity compared to conventional reinforced-concrete structures. Much research has been conducted on understanding the behavior of CFSTSs under various loading conditions and design theories have been established to predict the load carrying capacities of such structures. However, existing models do not consider the effects of sustained early loads on concrete strength and elastic modulus development of CFSTSs. With the need for rapid construction, CFSTSs may be subjected to loading at an early stage before concrete is fully cured. Such early loading may incur negative effects on strength and elastic modulus development of concrete within the confined environment. This paper propose theoretical models based on the compressive packing model (CPM) to simulate strength and elastic modulus development of early-age concrete under sustained stress. Development of concrete properties at early age is described using Hydration kinetics, and maximum paste thickness in the CPM model is modified using energy conservation to simulate sustained loads. Early concrete strength and the elastic modulus development rules were investigated experimentally for sustained loads. Predictions from the proposed models are compared with conventional models from CEB-FIP Model Code. Results showed that when loaded at a very early stage, a relatively high stress to strength ratio will result in causing damage in concrete. Such damage significantly affects the strength and elastic modulus development. Compared with concrete loaded at 28 days, concrete loaded at early stages showed significant reduction in concrete strength and elastic modulus.

Funder

Transportation science and technology program of Hebei Province

national natural science foundation of china

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3