Optimal design of steel pipe rack structures using PSO, GWO, and IGWO algorithms

Author:

Zakian Pooya1ORCID,Ordoubadi Behnam2,Alavi Erfan3

Affiliation:

1. Department of Civil Engineering, Faculty of Engineering, Arak University, Arak, Iran

2. Faculty of Civil Engineering and Geodetic Science, Leibniz Universität Hannover, Hanover, Germany

3. Structural Engineering Department, Sazeh Consultants, Tehran, Iran

Abstract

Design optimization of industrial structures is of great importance for engineers in order to provide a cost-effective structural design. Meanwhile, pipe rack is a skeletal industrial structure subjected to various types of loading such as gravity, seismic, piping, and thermal forces. While there are many studies on design optimization of the most common structures, only a limited number of studies exist on optimal design of industrial structures. In this article, a design optimization problem is proposed for weight minimization of steel pipe rack structures, and then the problem is solved through three meta-heuristic algorithms consisting of a modified particle swarm optimization (PSO), grey wolf optimizer (GWO), and the recently developed improved grey wolf optimizer (IGWO). The optimization problem is in discrete form in order to consider practically available cross-sections for the structural members. Stress ratio, drift, and dimensional constraints are imposed during the optimization. In order to demonstrate the capability and effectiveness of the present design optimization problem, a pipe rack structure is optimized by the proposed algorithms, and the optimized designs are compared to an ordinary design in terms of the structural weight and the status of constraints.

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3