Behaviour of partly stiffened cold-formed steel built-up beams: Experimental investigation and numerical validation

Author:

Dar M Adil1ORCID,Subramanian N2,Dar A R3,Anbarasu M4ORCID,Lim James BP5,Atif Mir3

Affiliation:

1. Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi, India

2. Consulting Structural Engineer, Maryland, USA

3. Department of Civil Engineering, National Institute of Technology, Srinagar, Srinagar, India

4. Department of Civil Engineering, Government College of Engineering Salem, Salem, India

5. Department of Civil and Environmental Engineering, The University of Auckland, Auckland, New Zealand

Abstract

To address the various instability problems in cold-formed steel members, many researchers have mainly focused on developing innovative sectional profiles wherein geometry of the section plays a vital role in enhancing the inherent resistance of such sections against premature buckling. However, the process of forming such innovative shapes is not only complex and time-consuming but sometimes such sections fail to mobilize their complete reserve strength. Hence, a stiffening arrangement of weaker zones for mobilizing the untapped reserve strength is suggested. The contribution of this simple, effective and partly stiffening arrangements, aimed at eliminating/delaying the premature local buckling, is studied both experimentally and numerically and also compared with existing codes. Experimental study was carried out on different simply supported cold-formed steel beams with judiciously proposed stiffening arrangements under four-point loading. An equivalent hot-rolled steel beam was also tested to compare the efficiency of the cold-formed steel beams. The cold-formed steel beams investigated had different width-to-thickness ratio, different geometries and different stiffening arrangements. The test strengths, failure modes, deformed shapes, load versus mid-span displacements and geometric imperfections were measured and reported. The test strengths of the beam models are also compared with the design strength predicted by North American Standards and Eurocode for cold-formed steel structures. To validate the test results further, a numerical study was carried out on such stiffened cold-formed steel beams using finite element software ABAQUS. All these results show that the proposed strengthening system is efficient and economical and allow cold-formed steel beams to reach greater load carrying capacity.

Funder

Consulting Engineers

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3