An experimental and analytical investigation of reinforced concrete beam-column joints strengthened with a range of CFRP schemes applied only to the beam

Author:

Ali Sarmad Abdulsahab1ORCID,Forth John P.1

Affiliation:

1. University of Leeds, Leeds, UK

Abstract

This paper investigates the experimental and analytical behaviour of beam-column joints that are subjected to a combination of torque, flexural and direct shear forces, where different Carbon Fibre Polymer (CFRP) strengthening wraps have been applied only to the beam. These wrapping schemes have previously been determined by the research community as an effective method of enhancing the torsional capacities of simply supported reinforced concrete beams. In this investigation, four 3/4-scale exterior beam-column joints were subjected to combined monotonic loading; three different beam wrapping schemes were employed to strengthen the beam region of the joint. The paper suggests a series of rational formulae, based on the space truss mechanism, which can be used to evaluate the joint shear demand of the beams wrapped in these various ways. Further, an iterative model, based on the average stress-strain method, has been introduced to predict joint strength. The proposed analytical approaches show good agreement with the experimental results. The experimental outcomes along with the adopted analytical methods reflect the consistent influence of the wrapping ratio, the interaction between the combined forces, the concrete strut capacity and the fibre orientation on the joint forces, the failure mode and the distortion levels. A large rise in the strut force resulting from shear stresses generated from this combination of forces is demonstrated and leads to a sudden-brittle failure. Likewise, increases in the beams’ main steel rebar strains are identified at the column face, again influenced by the load interactions and the wrapping systems used.

Funder

ministry of higher education and scientific research

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3