Optimal wireless sensor network configuration for structural monitoring using automatic-learning firefly algorithm

Author:

Zhou Guang-Dong1,Xie Mei-Xi1,Yi Ting-Hua2,Li Hong-Nan2

Affiliation:

1. College of Civil and Transportation Engineering, Hohai University, Nanjing, China

2. School of Civil Engineering, Dalian University of Technology, Dalian, China

Abstract

Wireless sensor networks are becoming attractive data communication patterns in structural health monitoring systems. Designing and applying effective wireless sensor network–based structural health monitoring systems for large-scale civil infrastructure require a great number of wireless sensors and the optimal wireless sensor networks configuration becomes critical for such spatially separated large structures. In this article, optimal wireless sensor network configuration for structural health monitoring is treated as a discrete optimization problem, where parameter identification and network performance are simultaneously addressed. To solve this rather complicated optimization problem, a novel swarm intelligence algorithm called the automatic-learning firefly algorithm is proposed by integrating the original firefly algorithm with the Lévy flight and the automatic-learning mechanism. In the proposed algorithm, the Lévy flight is adopted to maximize the searching capability in unknown solution space and avoid premature convergence and the automatic-learning mechanism is designed to drive fireflies to move toward better locations at high speed. Numerical experiments are performed on a long-span bridge to demonstrate the effectiveness of the proposed automatic-learning firefly algorithm. Results indicate that automatic-learning firefly algorithm can find satisfactory wireless sensor network configurations, which facilitate easy discrimination of identified mode vectors and long wireless sensor network lifetime, and the innovations in automatic-learning firefly algorithm make it superior to the simple discrete firefly algorithm as to solution quality and convergence speed.

Funder

973 Program

National Natural Science Foundation of China

Science Fund for Excellent Young Scholars of Jiangsu Province

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3