Data-driven axial bearing capacity analysis of steel tubes infilled with rubberized alkali-activated concrete

Author:

Zhou Chang1ORCID,Tan Xiao2ORCID,Zheng Yuzhou3,Wang Yuan2,Mahjoubi Soroush45

Affiliation:

1. School of Transportation, Southeast University, Nanjing, Jiangsu Province, China

2. College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing, Jiangsu Province, China

3. College of Civil Engineering, Nanjing Tech University, Nanjing, Jiangsu Province, China

4. Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA

5. Department of Material Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA

Abstract

This study aims to employ machine learning algorithms to analyze the axial bearing capacity of rubberized alkali-activated concrete filled steel tubes. A dataset encompassing 327 synthesized instances and seven input features is adopted for training and testing six machine learning models, including Decision Tree, Random Forest, Extremely Randomized Trees, Adaptive Boosting, Gradient Boosting Decision Trees (GBDT), and eXtreme Gradient Boosting Trees (XGBoost). The SHapley Additive exPlanation algorithm is employed to elucidate the prediction process of machine learning models and to analyze the influence of each parameter on axial bearing capacity. Comparison of evaluating metrics shows that GBDT and XGBoost models achieve highest accuracy and generalization capabilities when their Coefficient of Determination values surpassing 0.98 and Mean Absolute Percent Error remaining below 3%. Moreover, the explanation analysis of machine learning models reveals that diameter/width of the cross section, rubber content, yielding strength and thickness of steel tubes are critical variables that affect the axial bearing capacity, while compressive strength of alkali-activated concrete, specimen height, and shape of cross section show negligible impact. Besides, GBDT model overemphasizes the effect of specimen height and might lead a conservative prediction for specimens with smaller heights. Finally, compressive strength of alkali-activated concrete and diameter/width, thickness, and yielding strength of steel tubes are positively correlated with axial bearing capacity, and the increase of rubber content in alkali-activated concrete leads to the decrease of capacity.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3