Rock anchor hanger effect on single-tower earth-anchored suspension bridge mechanical performance: An analytical model and multi-objective golden eagle optimization

Author:

Chen Yu-peng1,Zhang Wen-ming1ORCID

Affiliation:

1. Key Laboratory of Concrete and Prestressed Concrete Structures of the Ministry of Education, Southeast University, Nanjing, China

Abstract

The application of a composite saddle in single-tower earth-anchored suspension bridges (STEASBs) replaces the tower on the steep slope side, which is a cost-effective solution that improves bridge safety and provides environmental protection for the steep bank slope of the valley. However, this novel bridge design needs an appropriate model to evaluate the effect of rock anchor hangers on the structure in the non-girder area and adjust their parameters to optimize the mechanical response of the whole bridge structure. This study proposes an approach to quickly evaluate the most unfavorable load cases of the STEASB and further optimizes the structural parameters of rock anchor hangers to enhance structural safety. An analytical model for the STEASBs under the live load is proposed and verified by the finite element model (FEM), with the maximum relative error not exceeding 7.37%. Combined with the golden eagle optimizer (GEO), the most unfavorable load cases of the corresponding design indices are yielded. The Pareto optimal solutions for the spacing, cross-sectional area, and initial tension of the vertical rock anchor hangers are obtained through multi-objective optimization to improve the mechanical behavior of STEASBs. In addition, it is clarified that the main function of rock anchor hangers is to reduce the peak value of the stress amplitude of the hangers and girder-end rotation, providing a theoretical basis for the STEASB design.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evolution of suspension bridge structural systems, design theories, and shape-finding methods: A literature survey;Journal of Traffic and Transportation Engineering (English Edition);2024-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3