Chaotic enhanced colliding bodies optimization algorithm for structural reliability analysis

Author:

Cheng Jiaming1ORCID,Zhao Wei1

Affiliation:

1. MOE Key Laboratory of Disaster Forecast and Control in Engineering, School of Mechanics and Construction Engineering, Jinan University, Guangzhou, China

Abstract

It is of extreme importance to assess the failure probability and safety level of structural system in structural design. Nowadays, many researchers presented several approaches for structural reliability analysis, such as the first-order reliability method, Monte Carlo simulation, and the meta-heuristic algorithm. The meta-heuristic algorithm is not only efficient to solve global optimization problems but also shown to be an effective tool for structural reliability analysis. A recent meta-heuristic optimization approach, enhanced colliding bodies optimization, has emerged as a relatively simple implementation with a fast convergence speed. Chaos theory is characterized by its ergodicity, pseudo-randomness, and irregularity. This article thus presents a novel approach introducing chaotic maps into the enhanced colliding bodies optimization algorithm to promote the performance of convergence, named as chaotic enhanced colliding bodies optimization algorithm. The proposed algorithm uses chaotic maps to change the generation pattern of particles and improve convergence characteristics. A procedure based on the effective use of the represented chaotic enhanced colliding bodies optimization is then applied in structural reliability analysis. A variety of numerical and structural problems are tested in this article to demonstrate that the given method actually improves the performance of enhanced colliding bodies optimization in convergence as well as the accuracy for reliability analysis compared with the other methods existing in the literature.

Funder

national natural science foundation of china

guangzhou science, technology and innovation commission

Natural Science Foundation of Guangdong Province

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3