Fatigue performance analysis of precast segmental assembled concrete beams

Author:

Liang Yan1,Ren Shun-En1ORCID,Tong Ming-Na1,Zhu Jiang-Nan1,Yan Li1

Affiliation:

1. School of Civil Engineering, Zhengzhou University, Zhengzhou, China

Abstract

In recent years, assembled bridges have become widely utilized in bridge construction, raising concerns about durability-related bridge diseases over time. These issues significantly impact the fatigue life of assembled bridges, necessitating an in-depth exploration of their fatigue performance. While existing research primarily concentrates on the transverse connection of multiple longitudinal beams, there is a notable dearth of studies on longitudinal precast segmental assembled bridges. This paper addresses this gap by establishing a fatigue benchmark finite element model for segmental assembled concrete beams, building upon existing experiments. The study employs numerical simulation to analyze the entire fatigue process, examining stress distribution, damage development, and considering the influence of reinforcement corrosion. Furthermore, a fatigue life prediction method, based on fatigue residual strength (R), is proposed for predicting the fatigue life (N) of concrete in precast segmental assembled beams. Results reveal that prestressed and ordinary reinforcements experience increasing stress with loading cycles, peaking around 100,000 cycles. Throughout fatigue loading, compressive stress in concrete remains low, preventing fatigue compression failure. However, tensile stress near joints gradually rises, initiating cracks at the mid-span beam’s bottom. With continued cyclic loading, these cracks propagate towards the loading point. The upper and lower limits of fatigue life predicted by the fatigue life prediction method closely align with the compressive fatigue test values of concrete, proposed fatigue life prediction method is efficient and accurate.

Funder

Annual Basic Research Foundation for Young Teachers, China

China Postdoctoral Science Foundation

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3