Strengthening reinforced concrete bridge piers against heavy vehicle collisions with ultra-high performance concrete collars: A finite element analysis study

Author:

Qu Chunpeng1ORCID,Farzaneh Farhad1,Jung Sungmoon1,Zhang Qian1

Affiliation:

1. Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, USA

Abstract

This paper investigates the effectiveness of ultra-high performance concrete (UHPC) collars in strengthening reinforced concrete (RC) bridge piers against heavy tractor-trailer collisions through finite element (FE) analysis. First, validated FE models of UHPC and a heavy tractor-trailer were provided. Then, FE analyses were conducted to evaluate the strengthening performance of the UHPC collar. The effectiveness of UHPC collar was compared with conventional RC collar, and the effects of varying UHPC collar thickness, height, and collar reinforcement were investigated. The results showed that the most severe damage observed on bridge piers due to heavy vehicle collisions primarily occurred below a height of approximately 2000 mm, manifested as diagonal shear cracks and plastic hinges. Therefore, the recommended minimum collar height is 2000 mm. The comparison between UHPC collar and RC collar strengthening demonstrated the superior effectiveness of UHPC collars. A 130-mm UHPC collar exhibited a similar strengthening effect as an 180-mm RC collar. Among the three investigated parameters of UHPC collar thickness, height, and collar reinforcement, the study found that collar thickness had the most significant influence on the effectiveness of the UHPC collar in terms of damage pattern, energy absorption, and maximum deflection. While collar height primarily influenced deflection, a larger collar height was beneficial in reducing pier deflection at the end of the strengthened segment. Adding a small amount of collar reinforcement improved the performance of piers; however, this improvement was limited. The findings of this study address the lack of research on using UHPC for strengthening full-scale bridge piers against heavy tractor-trailer collisions and provide valuable references for future designs with similar applications.

Funder

Florida Department of Transportation

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3