Affiliation:
1. Key Laboratory of C & PC Structures Ministry of Education, Southeast University, Nanjing, China
Abstract
A combination of coral reef sand (CRS) concrete and fibre-reinforced polymer (FRP) bars provides an effective solution to the durability deficiency in conventional RC structures. This study experimentally investigates the durability of CRS concrete beams reinforced with basalt FRP (BFRP) bars in a simulated marine environment. Flexural tests are conducted on a total of fourteen CRS concrete beams aged in a cyclic wet-dry saline solution at temperatures of 25, 40 and 55°C. The variables comprise the types of reinforcement (steel and BFRP), the aging duration and the temperature. The failure modes, capacities, deflections and crack development of the beams are analysed and discussed. The results indicate that the ultimate load of the beams exhibits no degradation after aging, whereas the failure mode of the BFRP-CRS concrete beams transition from flexure to shear, which is caused by the degradation in the mechanical properties of the stirrups. The aged BFRP-CRS concrete beams show a substantial increase of over 70% in their initial stiffness compared with the control beams (beams without aging) and a substantial decrease in their crack width after aging due to the prolonged maturation of the concrete. Furthermore, a formula for calculating the shear capacity in the existing code is modified by a partial factor equal to 2, which can predict the capacity of a CRS concrete beam reinforced with BFRP bars in a marine environment.
Funder
national key research and development program of china
Subject
Building and Construction,Civil and Structural Engineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献