Shear strength prediction of short circular reinforced-concrete columns using soft computing methods

Author:

Ketabdari Hesam1ORCID,Karimi Farzad2,Rasouli Mahsa1

Affiliation:

1. Faculty of Civil, Water and Environmental Engineering, Shahid Beheshti University, Tehran, Iran

2. Faculty of Civil Engineering, Qom University, Qom, Iran

Abstract

In this article, it has been aimed to predict the shear strength of short circular reinforced-concrete columns using the meta-heuristic algorithms. Based on the studies conducted so far, the parameters dominantly affecting the shear strength include axial force, longitudinal and transverse reinforcement, column dimension ratio, concrete compressive strength and ductility. In this respect, first, 200 numerical models of the short circular reinforced-concrete column incorporating various effective parameters so that a sufficient number of outputs could be provided, are analyzed by ABAQUS software to compute their shear strengths. Then, the gene expression programming and particle swarm optimization algorithms are employed to predict the shear strengths and by means of each algorithm, a relation was proposed accordingly. Then, using the experimental data, these relations are evaluated by comparing with those specified in ACI 318 and ASCE-ACI 426. The results indicate that the percentage of relative error between the experimental data and the values obtained from ACI 318 and ASCE-ACI 426 is respectively equal to 25% and 30%, which have been reduced to 13% and 9% through the gene expression programming and particle swarm optimization algorithms implying the satisfactory performance of these two algorithms. Finally, a comparison of the gene expression programming and particle swarm optimization is investigated in terms of convergence rate, degree of accuracy, and performance mechanism.

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3