Experimental study on post-fire mechanical performances of high strength steel Q460

Author:

Kang Lan12ORCID,Wu Bin12,Liu Xinpei3,Ge Hanbin4ORCID

Affiliation:

1. School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, Guangdong Province, People’s Republic of China

2. State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou, Guangdong Province, People’s Republic of China

3. School of Civil Engineering, The University of Sydney, Sydney, NSW, Australia

4. Department of Civil Engineering, Meijo University, Nagoya, Japan

Abstract

A series of experimental tests for investigating the post-fire mechanical (PFM) and post-fire fracture (PFF) performances of high strength steel Q460 are reported in this paper. All Q460 coupon specimens are heated up to a designated temperature which is selected from 100 to 900°C and then cooled down naturally to room temperature. Tensile tests are conducted to obtain their completely full-range post-fire stress-strain curves and the corresponding mechanical properties. The obtained experimental results show that with an increase in the heating temperature, the post-fire yield strength and ultimate strength of the Q460 structural steel decrease particularly when the heating temperature is over 650°C, but the post-fire elongation enhances. Ductile fracture behaviour of the coupon specimens under axial tensile loading can also be observed through the tensile coupon tests. The obtained experimental data are compared with the other results found in the open literatures on Grade 460 high strength steel. Based on a wider range of experimental data sets, predictive equations for evaluating the PFM properties of Grade 460 high strength steel are proposed. The experimental results presented in this study will provide benchmark data for the future calibration of complex ductile fracture parameters applied in numerical simulation.

Funder

the Guangdong Province Special Support Program "Innovating Science and Technology for Young Top Talents"

National Key Research and Development Program of China

the Fundamental Research Funds for the Central Universities

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3