A damage detection procedure using two major signal processing techniques with the artificial neural network on a scaled jacket offshore platform

Author:

Mansouri Nejad Nakisa1,Beheshti Aval Seyed Bahram1ORCID,Maldar Mohammad1ORCID,Asgarian Behrouz1

Affiliation:

1. Department of Civil Engineering, K. N. Toosi University of Technology, Tehran, Iran

Abstract

With the help of Structural Health Monitoring (SHM) methods, it is possible to identify the occurrence of damage at its early stages and prevent fatality and financial damages. Great advances in signal processing methods in combination with Machine learning tools have led to better achieve this goal. In the present paper, the two major techniques, that is, Empirical Mode Decomposition (EMD) and Discrete Wavelet Transform (DWT) are combined with Artificial Neural Network (ANN) through processing raw acceleration responses measured on a scaled jacket type offshore platform which was constructed and tested as a benchmark structure at K.N. Toosi University of Technology. In this way, ANN was trained by the signals obtained from EMD and DWT for three different conditions of the jacket platform to determine the relative damage severity. The envelope of the obtained signal’s energy (ENV) as an appropriate damage index was used to determine the damage location. The results of the application of this procedure on the case study indicated that DWT, compared to EMD, is a more reliable signal processing method in damage detection due to better noise reduction.

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

Reference42 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3