Axial compression capacity analysis of prefabricated steel reactive powder concrete columns in prefabricated modular buildings

Author:

Du Guoqiang1,Zhang Xianyi1,Bu Liangtao1ORCID,Hou Qi2

Affiliation:

1. College of Civil Engineering, Hunan University, ChangSha, China

2. Hunan Hongli Civil Engineering Inspection and Testing Co., Ltd., ChangSha, China

Abstract

This article proposes a prefabricated steel reactive powder concrete (PSRPC) component. Axial compression tests are conducted with five 3m full-scale column specimens to investigate the specimen damage and failure process and to measure the axial displacement, strain and ultimate bearing capacity in order to study the influences of the RPC strength and the section steel flange thickness on the mechanical properties of the PSRPC. The tests show the following. The ultimate failure mode of the PSRPC is column end splitting. During the loading process, the RPC and the section steel work compatibly, and their strengths are given full play. The lateral effect of the RPC on the section steel and the composite confinement effect of the stirrups and section steel on the RPC core significantly increase the ultimate bearing capacity of the PSRPC, and these effects increase with an increase in the RPC strength. The confinement effect on the RPC core in the enclosed region increases with an increase in the section steel flange thickness, that is, the thicker the section steel flange, the larger the portion of the load taken by the RPC core and the higher the ultimate bearing capacity of the PSRPC. The finite element analysis of PSRPC specimen is carried out by ANSYS software, and the simulation results are in good agreement with the test results. A method for calculating the axial bearing capacity of a full-scale column is proposed, taking the confinement effect of the stirrups and section steel on the RPC core into account.

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3