Microstructural analysis to uniaxial low cyclic compression of high-strength concrete after high temperature

Author:

Zhao Dongfu1,Jia Penghe1,Hou Pingying1,Liu Huixuan1,Zhao Rundong1,Gao Haijing1

Affiliation:

1. School of Civil and Transportation Engineering, Beijing University of Civil Engineering and Architecture, Beijing, China

Abstract

The uniaxial compressive cycling tests of high-strength concrete after high temperature under different stress were carried out using the electrohydraulic servo-controlled fatigue testing system. The investigation focused on low-cycle fatigue to figure out the relationship between microstructural development and number of cycles. The variation in microstructure during uniaxial compressive fatigue process was systematically analyzed and compared using ultrasonic, micro-hardness test, mercury intrusion porosimetry, and scanning electron microscopy. It is found that at the same life ratio, the cumulative fatigue damage caused by the lower stress is greater than that caused by the higher stress, and the four kinds of test methods used to measure the microstructure are consistent, interrelated, and confirmed with each other well. Through the nonlinear regression analysis of fatigue residual strain and microstructural parameters, the relationship models between them were established. Furthermore, the fatigue damage models based on microstructural parameters were established. On this basis, both the dynamic evolution process and damage mechanism of microstructure during uniaxial compressive fatigue were further revealed.

Funder

the National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3