Damage quantification of beam structures using deflection influence line changes and sparse regularization

Author:

Chen Zhi-Wei1ORCID,Zhao Long2,Zhang Jian2,Cai Qin-Lin12,Li Jun3ORCID,Zhu Songye2ORCID

Affiliation:

1. Department of Civil Engineering, Xiamen University, Xiamen, Fujian, China

2. Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong S.A.R., China

3. Centre for Infrastructure Monitoring and Protection, School of Civil and Mechanical Engineering, Curtin University, Bentley, WA, Australia

Abstract

Influence line (IL) has emerged as very promising damage indices for bridge damage detection. This study proposed a method to localize and quantify damage in beam structures by estimating section flexibility change from deflection IL (DIL) change. To this end, the relationship between second derivative of DIL change and flexibility change was established. To remove noise interference in measurement, piecewise quadratic functions were used to fit and replace noisy DIL change curves, wherein the coefficients of quadratic function were determined via a sparse regularization method, considering the sparsity nature of damage that typically takes place in only a limited number of elements. The feasibility and accuracy of the proposed method are verified through numerical examples and laboratory experiments. Through four hypothetical damage scenarios of a simply supported beam with one or two damaged locations, its ability to quantify minor damage and its anti-noise robustness were well verified. Finally, a laboratory experiment on a simply supported aluminum beam illustrated that the location and extent of damage could be successfully identified in the single-damage and double-damage cases. The numerical and experimental results indicate that the proposed method is promising for future damage localization and quantification of bridge structures.

Funder

Science and Technology Administrative Bureau of Xiamen City of China

Principal Fund of Xiamen University

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3