Comprehensive sensitivity analysis of rotational stability of a super-deep underground spherical structure considering uncertainty

Author:

Wan Hua-Ping1ORCID,Zheng Yanfeng1,Luo Yaozhi1,Yang Chao1,Xu Xian1

Affiliation:

1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, China

Abstract

Jiangmen Underground Neutrino Observatory central detector is located 700 m below the ground and also submerged into an ultrapure water pool. The main structure of the Jiangmen Underground Neutrino Observatory central detector is a hybrid spherical shell that is vulnerable to rotation under the buoyancy effect. The influences of the model parameters on the rotational stability of this complex and unique structure are investigated. Since the model parameters are inevitably subjected to many sources of uncertainties (e.g. manufacturing tolerances and geometrical imperfections), the parameter uncertainty is taken into account. In addition, linear and nonlinear rotational stabilities of this super-deep underground spherical structure are also under consideration. Specifically, the critical loading multiplier is used as the evaluation indicator of linear rotational stability and the load proportionality factor- θ curve is considered as the evaluation indicator of nonlinear rotational stability. The sensitivity of linear and nonlinear rotational stabilities to uncertain parameters is systematically studied in terms of univariate and multivariate global sensitivity analyses. The univariate global sensitivity analysis is able to evaluate the effects of uncertain parameters on each evaluation indicator, whereas multivariate global sensitivity analysis enables to assess the global influence of uncertain parameters on all evaluation indicators. A polynomial chaos expansion surrogate model is utilized to replace the time-consuming simulation model for analytical implementation of the univariate and multivariate global sensitivity analyses. The present polynomial chaos expansion-based univariate and multivariate global sensitivity analyses effectively and efficiently reveal the sensitivity of the rotational stability of this super-deep underground spherical structure to uncertain parameters, and provide a practical method for comprehensive sensitivity analysis of similar structures.

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3