On the effectiveness of ventilation to mitigate the damage of spherical chambers subjected to confined trinitrotoluene detonations

Author:

Hernandez Francisco1ORCID,Hao Hong2,Zhang Xihong2

Affiliation:

1. Department of Civil Engineering, University of Chile, Santiago, Chile

2. Department of Civil Engineering, Curtin University, Perth, WA, Australia

Abstract

This article presents a comparative study on the effectiveness of ventilation to mitigate blasting effects on chambers subjected to confined detonations of high explosives. The pressure time-history that acts on the chamber walls is described by three components: (1) the first shock wave, (2) the train of re-reflected shock waves, and (3) the gas pressure. The radial response of spherical chambers is described by the radial breathing mode and modeled by an equivalent single degree of freedom system. The three pressure components are considered for the calculation of the maximum ductility ratio, which is obtained from the numerical solution of the single degree of freedom chamber response. It is assumed that openings reduce the gas pressure but they have an insignificant effect on shock waves. The dynamic response of fully and partially confined chambers are calculated and compared. Results show that intermediate/small openings (less than 10% of the surface of the chamber) are ineffective to mitigate the chamber response and damage. The vibratory response of the chamber is susceptible to elastic or plastic resonance but it is not considerably modified by the long-term gas pressure because of its high radial breathing mode frequency, allowing concluding that ventilation is ineffective to reduce the maximum response of spherical chambers subjected to internal high explosive explosion.

Funder

Australian Research Council (ARC) and GexCon Australia Pty Ltd

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3