Simplified finite element method analysis of ultra-high-performance fibre-reinforced concrete columns under blast loads

Author:

Xu Juechun1,Wu Chengqing2,Li Jun2,Cui Jintao3

Affiliation:

1. School of Civil, Environmental and Mining Engineering, The University of Adelaide, Adelaide, SA, Australia

2. Centre for Built Infrastructure Research, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, Australia

3. Tianjin Key Laboratory of Civil Structure Protection and Reinforcement, Tianjin Chengjian University, Tianjin, China

Abstract

Ultra-high-performance fibre-reinforced concrete has exceptional mechanical properties including high compressive and tensile strength as well as high fracture energy. It has been proved to be much higher blast resistant than normal concrete. In this article, flexural behaviours of ultra-high-performance fibre-reinforced concrete columns were investigated through full-scale tests. Two 200 mm × 200 mm × 2500 mm columns with and without axial loading were investigated under three-point bending tests, and their load–displacement relationships were recorded and the moment curvatures were derived. The derived moment curvature relationships of ultra-high-performance fibre-reinforced concrete columns were then incorporated into a computationally efficient one-dimensional finite element model, which utilized Timoshenko beam theory, to determine flexural response of ultra-high-performance fibre-reinforced concrete columns under blast loading. After that, the one-dimensional finite element model was validated with the real blast testing data. The results show good correlation between the advanced finite element model and experimental results. The feasibility of utilizing the one-dimensional finite element model for simulating both high-strength reinforced concrete and ultra-high-performance fibre-reinforced concrete columns against blast loading conditions is confirmed.

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3