Affiliation:
1. School of Civil Engineering, Chang’an University, Xi’an, Shaanxi, P.R. China
Abstract
This paper investigates the feasibility and flexural behavior of reinforced concrete beams internally prestressed with straight unbonded aluminum alloy tendons by testing five partially prestressed beams and one reference beam. For each beam specimen, load-deflection curves, failure modes and cracking behavior, the relationship between load and strains in steel and prestressing aluminum alloy tendons were examined and analyzed. In particular, the effects of effective prestress, combined reinforcement index (CRI), and partial prestressing ratio (PPR) on flexure of concrete beams were discussed. The test results indicated that the spacing and width of concrete cracks of prestressed beams containing the same amount of bonded longitudinal steel reinforcement decreased with the increase of effective prestress, and the combined reinforcement index governs flexural behavior of the prestressed beams. The flexural crack width and displacement ductility exhibited a reduction with the increase of CRI. In addition, an analytical model was established to calculate the flexural strength and corresponding deflection at midspan of the concrete beams internally prestressed with unbonded aluminum alloy tendons by suggesting a new simplified curvature distribution, which is more accordant with the original curvature distribution. The proposed model provides a relatively good estimation of the flexural capacity and midspan deflection of the prestressed beams.
Funder
Special Fund for Basic Scientific Research of Central Colleges
National Natural Science Foundation of China
Subject
Building and Construction,Civil and Structural Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献