Experimental investigation into ultra-low cycle fatigue behavior of composite members in spatial grid structures

Author:

Song Xiayun1ORCID,Li Haiwang1,Zhang Jie1

Affiliation:

1. College of Civil Engineering, Taiyuan University of Technology, Taiyuan, China

Abstract

As earthquakes tend to cause ultra-low cycle fatigue failure of spatial grid structures in composite members and joints, this study sets out to test six groups of specimen comprising steel pipes and bolt sphere joints and analyzes the influence of joints and loading systems on failure modes, hysteretic behavior, skeleton curves, stiffness degradation, energy dissipation capacity, and the formation and development of plastic hinges. Results showed that the instability of the specimen in compressive loading led to the occurrence of denting and the formation of plastic hinges. Cracks originated in dented area, and ultra-low cycle fatigue fractures occurred in a dozen cycles. Plastic hinge was located in the middle area of the pipe, and the energy dissipation capacity was limited owing to the confined plastic hinge length. As the joint bending stiffness increased, so did the length of the plastic hinge, the degree of the dent, and the cumulative damage. Early fractures and a reduction in total energy consumption also occurred. Furthermore, a function related to the cumulative damage and macroscopic deformation that can evaluate the damage of the members in spatial grid structures was also established.

Funder

national natural science foundation of china

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3