Affiliation:
1. School of Civil Engineering, State Key Lab of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin, China
Abstract
The inverse finite element method (iFEM) is a superior shape sensing methodology in the field of structural health monitoring. However, the standard iFEM for beams yields only displacements at iFEM nodes whose spatial resolution is limited by the number of strain measurements. This study presented an extended iFEM that renders high-quality full-field displacement and strain fields by interpolating the displacements and strains at all locations on the beam using elemental shape functions. A series of numerical studies were implemented to verify the extended iFEM algorithm for various sensor and mesh configurations under different boundary and loading conditions. It showed that the extended iFEM gives smoother and more accurate results using far fewer inverse elements than the standard iFEM.
Funder
Science and Technology Development Plan Program of Tianjin Municipal Transportation Commission
National Natural Science Foundation of China
Natural Science Foundation of Tianjin City, China
Subject
Building and Construction,Civil and Structural Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献