Substructural damage identification in a digital twin framework using heterogeneous response reconstruction

Author:

Zhang Guangcai1,Zhou Zhenwei2ORCID,Wan Chunfeng1ORCID,Ding Zhenghao3,Wu Zhishen1,Xie Liyu4,Xue Songtao45

Affiliation:

1. Key Laboratory of Concrete and Prestressed Concrete Structure of Ministry of Education, Southeast University, Nanjing, China

2. School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, China

3. JSPS International Research Fellow, Division of Environmental Science and Technology, Kyoto University, Kyoto, Japan

4. Department of Disaster Mitigation for Structures, Tongji University, Shanghai, China

5. Department of Architecture, Tohoku Institute of Technology, Sendai, Japan

Abstract

The external excitations, interface forces and responses at the interface degrees-of-freedom are normally required in many existing substructural condition assessment methods, while they are difficult or even impossible to be accurately measured. To address this issue, a digital twin framework for output-only substructural damage identification with data fusion of muti-type responses is proposed in the present paper. First, heterogeneous responses including displacements, strains and accelerations from the target substructure are measured and divided into two sets. The multi-type responses in measurement set 2 are reconstructed with the first set of responses and transmissibility matrix in time domain. Then, a recovery method is introduced to obtain angular displacements from translational displacements and strains, to acquire angular accelerations from translational accelerations and the second order derivatives of strains by continuous wavelet transform. The recovered angular displacements and angular accelerations are involved into the evaluation of objective function. Besides, to avoid the single and monotonous search operation of traditional optimization algorithms, a reinforced learning-assisted Q-learning hybrid evolutionary algorithm (QHEA) by integrating Q-learning algorithm, differential evolution algorithm, Jaya algorithm, is developed as a search tool to solve the optimization-based inverse problem. The most suitable search strategy among DE/rand/1, DE/rand/2, DE/current-to-best/1, Jaya mutation in each iteration is selected and implemented under the guidance of Q-learning algorithm. Numerical studies on a three-span beam structure are performed to verify the effectiveness of the proposed approach. The results demonstrates that the proposed output-only substructural damage identification approach can accurately identify locations and severities of multiple damages even with high noise-polluted responses.

Funder

Postgraduate Research & Practice Innovation Program of Jiangsu Province

National Key R&D Program of China

Tohoku Institute of Technology Research Grant

Japan Society for Promotion of Science

Japan Society for the Promotion of Science

China Scholarship Council

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3