Behaviour of composite frames with castellated steel beams at elevated temperatures

Author:

Ellobody Ehab1,Young Ben2

Affiliation:

1. Faculty of Engineering, Sohar University, Sohar, Oman

2. Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong

Abstract

The behaviour of composite frames with castellated steel beams at elevated temperatures is investigated, and the results obtained were compared with the companion results of simply supported composite castellated steel beams. Overall, it is aimed to investigate the effect of axial and rotational restraining of the steel beam via rigid connections with protected steel columns at elevated temperatures. A previously reported finite element model for the analysis of composite beams in fire was extended to perform the nonlinear analyses of composite frames at elevated temperatures. The finite element model has accounted for the frame geometries and boundary conditions, nonlinear material properties of steel, concrete, profiled steel sheeting, longitudinal and lateral reinforcement bars as well as shear connection behaviour at ambient and elevated temperatures. The thermal properties at the steel beam top flange/profiled steel sheeting and profiled steel sheeting/concrete elements interfaces were considered in the thermal heat transfer analysis that allowed the temperatures to be accurately predicted in the composite slab during fire exposure. The comparison of composite frames and composite beams behaviour has shown that if the columns were sufficiently protected and the connection maintained its rigidity during fire exposure, such that it can restrain the composite beam thermal expansions, this would result in considerable reduction in fire resistances of the composite frames compared with that of simply supported composite beams. This is attributed to the premature failure at elevated temperatures due to local buckling at the bottom flange of the steel beams in the frame connections. Furthermore, the variables that influence the fire resistance and behaviour of the composite frames comprising different load ratios during fire, different fire curves, presence of web openings and different steel grades were investigated by parametric studies. It is shown that the strength of steel and the fire scenarios have a considerable effect on the time–displacement behaviour and fire resistances of the composite frames.

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3