Load–response correlation–based equivalent static wind loads for large cooling towers

Author:

Cao SS1,Ke ST2,Zhang WM3ORCID,Zhao L4,Ge YJ4,Cheng XX3ORCID

Affiliation:

1. School of Civil Engineering, Guangzhou University, Guangzhou, China

2. Department of Civil Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China

3. School of Civil Engineering, Southeast University, Nanjing, China

4. State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University, Shanghai, China

Abstract

The load–response correlation method has been recognized by the wind engineering community as a useful equivalent static wind load calculation method for structural design of quasi-static structures against strong winds. However, it has been found that the load–response correlation method is less effective to non-linear systems and in situations where load processes are non-Gaussian, such as large cooling towers subjected to strong winds. To validate the applicability of the load–response correlation method to large cooling towers, an aero-elastic model has been designed for a 215-m-high cooling tower in this article, which can simultaneously produce wind loads and wind-induced displacements of the structure according to wind tunnel model tests. Using data measured on the aero-elastic model, the exact results of correlation coefficients between wind loads and structural responses are obtained and validated by a non-linear finite element analysis. By comparing the correlation coefficients measured on the scaled model to the results based on the load–response correlation calculation, it is found that the correlations are much stronger for the load–response correlation calculation than those for the exact wind tunnel measurement. The explanation for this observation is that the non-linearity of the real structure and the non-Gaussian feature of the actual wind loads can weaken the correlations between the wind loads and the structural responses.

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

Reference13 articles.

1. Wind Pressures on a Large Cooling Tower

2. GB/T 50102-2003 (2003) Code for design of cooling for industrial recirculation water.

3. Investigation on hyperbolic cooling tower ultimate behaviour

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3