Flexural vibration band gaps in periodic Timoshenko beams with oscillators in series resting on flexible supports

Author:

Ding Lan1,Ye Zhi1,Wu Qiao-Yun2ORCID

Affiliation:

1. Faculty of Engineering, China University of Geosciences, Wuhan, P.R. China

2. School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, P.R. China

Abstract

The propagation properties of waves in Timoshenko beams resting on flexible supports and with periodically attached harmonic locally resonant oscillators are studied by the transfer matrix methodology. Through calculating the differential equations of the beam for the flexible vibration and the dynamic equations of the oscillators in series, the matrix of dynamic stiffness and the resulting transfer matrix are derived. Accordingly, the band gap in infinite system characterized by the propagation constant can be verified by comparing to the curve of transmission property, determined with the finite element method for the finite system. The mechanism of each band gap formation is further explored. Numerical results show that different from the single degree-of-freedom mass-spring model, one more locally resonant band gap is generated in the system of two oscillators in series. The introduction of flexible supports, allowing for variable internal coupling between the adjacent cells, produces an extra band gap with a minimum frequency of zero. It is also found that the starting frequencies of the locally resonant gaps are related to the spring stiffness and mass of the oscillator. Therefore, the positions and widths of the band gaps can be tuned by properly adjusting the four parameters of the oscillators and also the stiffness of the flexible supports.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3