Effects of free-stream turbulence on wind loads on a full-scale large cooling tower

Author:

Cheng XX1,Dong J1,Peng Y1,Zhao L2,Ge YJ2

Affiliation:

1. College of Civil Engineering, Nanjing Tech University, Nanjing, China

2. State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai, China

Abstract

The high variability in turbulence is a significant feature of the realistic atmospheric boundary layer winds which might have strong effects on wind loads on structures submerged in atmospheric boundary layer. This article has been devoted to this matter of science which is of practical importance to wind-engineering design and research. First, the variation of the turbulence intensity of the atmospheric boundary layer flow has been studied using theoretical calculations and meteorological wind measurements. Second, the effects of free-stream turbulence on wind loads on circular cylindrical structures have been revealed at high Reynolds number and equivalent conditions based on field measurements and wind tunnel model tests for wind effects on a large cooling tower. Through these works, it is found that the turbulence intensity for the measured atmospheric boundary layer winds is highly variable due to the significant effect of the mean wind speed, which is not well represented by the traditional empirical formulae. Besides, the free-stream turbulence significantly influences the dynamic characteristics of wind effects on the cooling tower in most cases, and the wind effects for a flow field of high turbulence intensity are generally more unfavorable than those for a flow field of low turbulence intensity.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3